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NOTATION

In order to conform to related work at the David Taylor Model
Basin, the nomenclature given in Reference 1 (see page 19) has been
employed, Pertinent items of the notation are listed here for convenient
reference, and are also defined in the text at the point where first used.

a Linear acceleration of the center of mass of the body

a, b, c Constants defining the semiaxes of an ellipsoid

e Eccentricity of the meridian elliptical section of a prolate
spheroid

F Total external force acting on the body

F 1  That part of F which is used to change the kinetic energy

of the fluid when the body is accelerated

F 2  Vector difference F - F 1

K1, MI, N1 Components in the x-, y-, z-directions of the moment of
F 1 about the origin of the x-, y-, z-axes

k Factor of proportionality relating the added mass effect to
the mass of fluid displaced

kI, k2 , k' Constants used to evaluate certain of the added mass
derivatives of a prolate spheroid when the origin of the
body axes is at the center of the spheroid and the x-axis
is the axis of revolution for the spheroid

m Actual mass of the body

0 Origin of the x, y, z body axes

p, q, r Components in the x-, y-, z-directions of the angular
velocity of the body relative to the fluid

T Kinetic energy of the fluid

t Time

u, v, w Components in the x-, y-, z-directions of the linear
velocity of the point 0 relative to the fluid
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X., X., X., X., X., X. The 21 constants, called added mass

u v w p q r derivatives, that characterize the added

yY,. mass properties of the body. Each deriva-
v w p q r tive has the form indicated by the typical

Z.Z., Z., Z. relation
w p q r

K., K., K.
p q r

M., M.
q r

N.
r

X 1 1 Y1 Z1  Components in the x-, y-, z-directions of F 1

x, y, z A set of moving, orthogonal, right-hand,
Cartesian coordinate axes fixed in the body;
with the location of the origin 0 of the axes
and the orientation of the axes with respect
to the body both arbitrary unless stated
otherwise at certain specific points in the
text

CI of 3oYo Constants that define the relative pro-portions of an ellipsoid

Mass density of the fluid

Dot over a quantity. The rate of change
of a quantity with respect to time
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ABSTRACT

Expressions are given for the complete "added mass" effect for
-any rigid body moving in any manner in an ideal fluid. The expressions
give the force and moment acting on the body in terms of 21 added mass
derivatives. These derivatives are the maximum number that are
independent for a Cartesian set of body axes. Reduced expressions
are also given for a finned prolate spheroid with the origin of the body
axes located at some point on the axis of revolution. Theoretical
values of the added mass derivatives are given for an ellipsoid and a
prolate spheroid when the reference axes are principal axes for an
origin located at the center of the ellipsoid or spheroid. The added
mass effect for a stationary body In an accelerating fluid is also
described.

INTRODUCTION

As part of the Fundamental Hydromechanics Research Program
at the David Taylor Model Basin, the general equations of motion of a
rigid body partially or totally immersed in a fluid have been under
study. These equations contain terms which, for convenience in the
present discussion, are referred to as "added mass" terms. The body
moving in the fluid behaves as though it has more mass than is actually
the case. The apparent increase in mass varies with the kind of motion
and the apparent distribution of the added mass also depends upon the
nature of the motion. What the added mass phenomenon is, and what
terms should be used to represent it in equations of motion do not
appear to be understood clearly by many persons. Clarity has not
been enhanced, furthermore, by the variety of names, such as
"virtual mass, " "ascension to mass, " "apparent mass, " and
"hydrodynamic mass" applied to the phenomenon.

Much has been written on the subject of added mass and a
number of authors have dealt very effectively with one aspect or
another of the matter. A usual characteristic of such treatments,
however, is that they are slanted toward some specific application.
As a result, when equations of motion are presented they usually
contain only those added mass terms that are important for a special-
ized end use.

Such approximate equations are often used as the starting point
when workers attempt to develop equations that will apply to other
classes of body, to other dynamic environments, or to the improve-
ment of the prediction of the dynamic behavior of bodies. Using such
an approach, one runs the risk of overlooking terms that have been
omitted as unimportant for an earlier end use, but may be significant
for the new application. The author felt that it might be helpful if the



complete expressions for the added mass of a body moving in an ideal
fluid were reviewed in studying the general equations of motion.

Examination of several probable sources showed that a general
expression is given for the kinetic energy of the fluid surrounding the
body, but that the treatment has not been continued to the point of
obtaining general expressions for forces and moments arising from the
added mass effect. 2, 3, 4 Accordingly, the necessary simple differentia-
tions were carried out and the results are presented here in the hope
that they may have reference value.

The paper is arranged with the general equations first because
easy access to them seemed most important. They are followed by
expressions for the added mass of a finned prolate spheroid with the
origin of the reference axes located somewhere on the axis of revolution
of the spheroid. These reduced equations serve to highlight the most
important added mass terms for the elongated finned bodies of revolution
that are often used as underwater vehicles. Following the presentation
of the added mass equations is a brief discussion of the method of
derivation and some of their salient features. Finally, some remarks
are made on the added mass of a stationary body in an accelerating
fluid.

COMPLETE EXPRESSIONS FOR ADDED MASS

The equations of motion for a rigid body customarily are referred
to a set of moving orthogonal Cartesian axes fixed in the body. If the
body is partially or totally immersed in a fluid, which would be at rest
except for the motion of the body, added mass terms usually appear as
part of such equations of motion. When the motion of the body is
completely general, and there is no restriction on the shape of the body
or the location of the axes with respect to the body, the complete
expressions for the added mass in a frictionless fluid are:

X X. C + X. ('V + uq) + X + Z. wq + Z q2

+ x¢ + X p + X , Y. v 7¢ r - V -pr -- 7. r
v p r V r

- X.ur - Y. wr
V W

+ Y.vq + Zipq- (Y4 - z)qr
1la]

2 References are listed on page 19.
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Y, = x.U +Y.W± +Y.4
v w q

+ Y. ~Y j+ YA+ X.vr -Y. vp + X + (X.-Z)rp-Z p 2

- X. (up - wr) + X.ur - Z wp
wv u

- Z~pq+ X~qrlb

7 X. (a -wq) + Zýv± +z.-4 - X uq - Xq 2

w w q U

+ Y.( + 4. -+ Z+ + Y vp + 'Y rp + Y~p2
w p 1

+X upi+ Y. wp

-X.vq - (X. - Y pq q Xqr Le

K = X.LX d+ Z.4% + d. l< X.wu IX.uq -Y. -2 Y. -
7 wq + M~q 2

p p q V I' xv q4 r

2 ++ Y. + K1j, + K.? -I. Y. v -(Y. - Zj)vr t .vp - M.r K Krp
p p r w q r p r q

-1 X. uv -(Y. - Z.)vw -(Y. + Z.)wr Y Ywp-X ar
w v w r q p

+ (Y. + Z.)vq + K pa M . qr [d
r q rq r d

M X.(&+ wq) +- Z* -ýuq) +M. -X. (U -w) (Z.-X.)wru
qqq w w a

+ Yc~ + K+ M. vP Yr - Y vp K Nip -r)+(.-N

Y. uv + X.vw -(X. Z. Z(up w wr) + (X. -ZJ)(wp + ur)
w V r p p

- M~p -[ ~qr le]



N X ri + Zr + M.4+ X u + Y'wwu - (X. - Yq)uq - Z wq - K q

2 2
+ NY,. - -X.v X.vr - (X- Y)vp + M.rp+ Kjp

r r r v r p qr q

- (X. - Y.)Uv - X. vw+ (X + Y .)up+ Y.ur+ Z.wpii v w q p r q

- (X4 + Y.pvq - (K. - M p)iq Kiqr if

Definitions of the various symbols used in Equations [1] are given in the
Notation. Note that the various linear and angular velocities u, v, w, p, q,
r are those of the body relative to the stationary fluid - furthermore they
are actual velocities, not incremental variations from an equilibrium con-
dition. Time derivatives, such as t, are relative to the moving x-, y-, z-
axes. The quantities X1, Y1 , Z1 are components in the x-, y-, z-
directions of the reaction force Fl that is exerted on the body by the fluid
during accelerated motion. Quantities K1 , M i, N1 are the x-, y-, z-
components of the moment of F1 about the origin O of the coordinate sys-
tem. As thus defined, F1 is part of the total external force F acting on the
body.

Equations [1] are in six parts. Each part is arranged with longi-
tudinal components of the motion on the first line and lateral components on
the second line. The third line contains mixed terms involving the u or w
velocity as one factor. Often one or both of these velocities are large
enough to be treated as constants during the motion, thus permitting the
affected terms on the third line to be treated as additional terms in the
lateral components of motion. The fourth line contains mixed components
of motion of such a nature that they usually can be neglected as second order
terms.

The general expressions for added mass, represented by Equations
[1], contain 21 constants (of which Xj is typical). This is the maximum
number of such constants that are independent for the Cartesian reference
frame used. In principle, one can write 36 constants, relating the 6 com-
ponents of force and moment to the velocity derivatives in the 6 degrees of
freedom, as shown in the following array:
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X," x. X. X. X. x.
"" v w p q r

Y Y. Y,. Y . Y . Y .
v w p q r

Z. Z. z.' Z. Z. Z.
u V W p q r

K. K. K. K. K. K.
U v w p q r

M. M. M. M. . M.
U v w p q r

N. N, N. N. N. N.
u v w p q r

In a real fluid these 36 constants may all be distinct. With ideal (friction-
less) fluid, however, the constants that are symmetrical with respect to
the indicated diagonal of the array are equal. Thus Yu Xv, M Z, etc.
As indicated, these relations are identities, independent of the nature of the
body. Consequently, it is sufficient to retain only the constants on and
above the diagonal in the array, thus:

x X. X. x x X
V v w p q r

Y . Y . Y . Y . Y .
V W p q r

z . z . z . Z
w p q

K. K . K.p q r

M. M.
q r

N .
r

The constants, which will be called added mass derivatives, are
functions only of the body shape and the density of the fluid. The 21 added
mass derivatives are necessary and sufficient to define completely the
added mass properties of any body moving in any manner in an ideal fluid.
Experience has shown that the numerical values of added mass in a real
fluid usually are in good agreement with those obtained from ideal fluid
theory. 5
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EXPRESSIONS FOR ADDED MASS OF A FINNED PROLATE SPHEROID

Many of the 21 added mass derivatives contained in the general ex-
pressions for added mass are either zero or mutually related when the body
has various symmetries. Bodies of practical interest almost invariably
have a vertical plane of symmetry. Bodies used as underwater vehicles
usually are even more symmetrical and a finned prolate spheroid is a good
approximation to many such bodies.

Assume a prolate spheroid with the origin of a Cartesian set of body
axes located at any arbitrary point on the axis of revolution, which is also
the x-axis. Mutually perpendicular y- and z-axes will also be perpendicu-
lar to the x-axis. Assume that the spheroid is fitted with a dorsal fin near
the maximum diameter of the body and lying in the xz-plane. In addition,
assume that the body has four fins that are identical and are located at the
rear of the body. Let these four fins each have the same x-coordinate and
be placed in cruciform fashion around the x-axis. Furthermore, let the
plane of each fin pass through the x-axis. This finned body can provide a
rather good approximation to a submarine or airship, as far as the theo-
retical values for added mass is concerned, when the spheroid has the
same fineness ratio and displacement as the actual body. 6

For such a finned body the general expressions become much simpler,
namely:

X = X. d Y-rv + v Z qw - Y r i- Z q - Y.rp [2a]
U V W r q

Y = X. ru + Y.v- Z +pw+ Y f- Z.lqtY [2b]
1 U Vr q

Z = -Xqu + Y~pv + Z.'ýV + Y~pr + Z.4 Yýp2  [2c]

K - Y .wv + Z.. vw + Y.(vq - wr) + Z.(vq - wr) - M. rq + Ni.qr
1 V W r q q r

[2dj
+ Y.(, - wp) + K.p + KI(- + qp)

M (X. - Z.)Uw - Y.pv -I Z - uq) + Mi 1 -N. pr

2 p2 [2e]
+ Y.rv + K.rp + K.(r - p

p p r
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N, - (X. - Y.)v u- Y.(ir + tr) + Z4pw T Mpq+1 + N1
1 i V rq q r

+ Y.(up- vq) - K.qp + K.(- qr) [2f]

The remarks on notation following Equations [ 1] also apply to Equations
[2]. The reduced complexity of Equations [2] results from the symmetry
of the finned spheroid, whereby

X. = X. = X. X. X. = 0v w p q r
Y. Y. =

w q

A. =Z.=0
P [3]

E. =0
q

M. = 0

The order of the terms has been rearranged in Equations [2j from what it
was in Equations [ l1 so terms involving derivatives of small magnitude
are at the end, and derivatives of nearly equal magnitude are grouped to-
gether.

ADDED MASS FOR A BODY OF REVOLUTION WITH SYMMETRIC FINS

Removal of the dorsal fin would make Y- and K- zero and reduce the
magnitude of K; in Equations [ 2j; also, other derivatives that are nearly
equal in magnit~ude would become equal, namely:

V W

Y. L [4JI' q

M. N.
q r

Hence, for a body of revolution with symmetric fins only, Equations [2]
reduce to

7



2ZX1 = X.Ut - Y. (rv -qw) -Y (qr + r) [Dal

Y = X.r u + Y.'(V - pw) + Y.(r + pq) [5b]
1 Ui V

Z -- X ! Y.('V+ PV) Y.(4 - pr) [5c3
1 " V r

K, 1< [5d]

P= (X - Y)uw - Y . ( pv - qu) +N." - (N. - K.)pr [Xe]
I U V I' r )p [e

N -(X. ) - uY)v + Y'(i-i ru -pw) + N. +(N. K.)pq [5f]
1 i V r r r p

Normally KY would be negligible compared to Nj in Equations [ 5e] and
[5f j. If there were no fins, KI' would be zero and with the usual sizes
of tail fin It probably can be approximated safely by zero in Equation [ 5d].

DISCUSSION OF THE ADDED MASS EXPRESSIONS

The derivation of the added mass expressions usually is based on
energy or momentum considerations. In this paper the energy approach
will be followed.

EXPLANATION OF KINETIC ENERGY IN FLUID

The kinetic energy In the fluid will be described first for steady
motion, and then for accelerated motion, of the body.

STEADY MOTION

Equations of motion for a body moving in a fluid are basically a state-
ment of Newton's Second Law

F m ra [8J

where F is the total external force on the body, m the actual mass of the
body, and a its linear acceleration in the direction of F.
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Consider first the case where the motion is steady and the body is
either partially or totally immersed in fluid. The steady motion implies
zero acceleration, so the tbtal external force F is zero. It is well known
that even during such steady motion, in a real fluid, certain hydrodynamic
reactions of the fluid produce external forces on the body. An example is
the resistance, or drag, force. If the motion is to be steady, such hydro-
dynamic forces must be balanced by other forces - the resistance, for
example, is balanced by a propulsive force. The treatment, in the equa-
tions of motion, of the hydrodynamic components of force pertaining to
steady motion seems to be readily grasped by most students of the subject.

Because of the presence of the fluid around the body, however, an-
other action takes place that seems to be less well understood. Any
motion of the body induces a motion in the otherwise stationary fluid be-
cause the fluid must move aside and then close in behind the body in order
that the body may make a passage through the fluid. As a consequence,
the fluid possesses kinetic energy that it would lack if the body were not
in motion. The body has to impart the kinetic energy to the fluid by doing
work on the fluid, I. e., the work done is equal to the change in kinetic
energy. Any adequate equations of motion for the body must take into
account this kinetic energy given to the fluid by the body. This is the func-
tion of the added mass terms in the equations.

When the motion of the body is steady, the corresponding fluid motion
is steady and the kinetic energy in the fluid is constant. Hence no work is
done on the fluid as long as the motion of the body remains steady. It fol-
lows that if only steady motions are to be studied, the added mass terms
can be omitted in the equations of motion.

ACCELERATED MOTION

The discussion will now be turned to accelerated motion of the body.
Many so-called steady motions are actually accelerated motions, the most
Important example being the steady turn where the body must continually
be accelerated inward in order to pursue a curved path. Returning to
Equation [6J, assume that F has a value other than zero. Then, according
to Equation [61, the body will be accelerated. A change in motion of the
body cannot occur, however, without a related change in the state of motion
of the surrounding fluid. The change in motion of the fluid will result in a
change in the kinetic energy of the fluid. In other words, in order to accel-
erate, the body must do work on the fluid.

9



Work Is accomplished by moving a force through a distance. In this
case the distance is that through which the body moves, and the force is the
summation over the body surface of the pressure that the body exerts on the
fluid. In applying a force to the fluid, the body experiences an opposite re-
action force F 1, which is part of the total external force F. Let the remain-
der of the contributions to F be called F2 . Then Equation [ 6] takes the form

S+ F? = na ['7]

Note *that vector addition is involved in Equation [ 7]. In Figure 1,
suppose that a sphere is immersed in a fluid and accelerated to the right.
Then the reaction force F 1 is directed to the left, and F2 must act in the
opposite direction and be large enough to overcome F1 and also accelerate
the sphere.

F2 • F1

Figure 1 - External Forces on an Accelerating Sphere

ADDED MASS EFFECT IN TERMS OF KINETIC ENERGY

In gendral the force F 1 will have components X 1, Y1, Z1 along the
x, y, z body axes and moment components K1 , M 1, N1 about the axes. On
pages 168 and 169, Equations (2) and (3), of Reference 2, Lamb gives
expressions that'may be used to obtain these components when the kinetic
energy of the fluid is varied. The desired relations are:

10



d aT 6T 8T
X 1 dt 3u r.y

d • 3 T OT

1 dt Ov U -

d 8T aT 8T
z pa"+ qy-

I1 dt 3w o~ ~

d OT OT 3T 5T WT
1 t a - qy- ry- V aw V8

K1 cita op . . . . .Wt-
d aT aT OT 3T 8T

N1 = t r Pq + qpp-3 U-v •u

N 1  
j-- P- qy- -I- vy

where T is the total kinetic energy of the fluid and t is time.

GENERAL EXPRESSION FOR KINETIC ENERGY IN FLUID

On page 163, loc. cit., Lamb gives the following expression for twice

the total kinetic energy of the fluid:

2T X. u Y'v -Z. w - 2Y.vw - 2X. wu - 2Xuv
U V W W W V

2 2 2
- Kpp - M•q - N.r - 2M~qr - ZK~rp - 2Kipq

- 2p(X.u + Y.v + Z.w)
P P P

- 2q(X u + Y.v + Z.w)
q q q

2r(X.u + Y.v + Z.w) [9]
r r r

11



where Lamb's notation has been replaced by that of Reference 1. Equation
[9] is general and applies to any body moving in a fluid. It contains the
same 21 independent added mass derivatives found in Equations [1].

DERIVATIVES OF KINETIC ENERGY WITH
RESPECT TO FLUID VELOCITIES

Six partial derivatives must be obtained from Equation [9] in order
to expand Equations [81, namely:

3- -X .- X.w -X.v - V - X q -XY.r

3 w - p q r

aT

3T
w Z W Y.V U-Zp -/q - .r

3p T - Kpp- Ktr - K q - X.' - Y.vp -rZ.W

pp r q p p p

- M q- M r -Kep -Xu- Y.v Z.w
q q r q q q

-r - N.r - M~q - K.p - X.u - Y.v - Z7.w
a r r r r r

Substitution of Equations [10] into Equations [8] will yield Equations [1].

ADDED MASS GOVERNED BY FLOW PATTERN,
NOT ACCELERATION

It seems desirable to point out thaV the same acceleration, as meas-
ured along the body axes, can be produced by different types of motion of
the body. The added mass effect does not depend on the acceleration, per
se, but on the nature of the body motion, so the added mass effect may
differ under two sets of circumstances where the acceleration is the same.
For example, a prolate spheroid, moving in a perfect fluid in the direction
of the x-axis, and experiencing an acceleration ti, would have streamlines
of the sort sketched in Figure 2.

12



Figure 2 - Streamlines for Spheroid Accelerated Along x-Axis

Consider now the same spheroid making a steady turn at a fixed angle
of drift. The nature of the potential flow would be that shown in Figure 3.

Direction

u. of motion

/~ 'u' • Flight

S~- rv

Figure 3 - Streamlines for a Spheroid in a Steady Turn

Although all the velocities are steady in Figure 3, the Coriolis acceleration 7

produces an acceleration of the body of the amount -rv along the x-axis. The
actual mass m of the body would react in the same way to either the fi of
Figure 2 or the -rv of Figure 3.

The added mass effect would definitely be different in the two cases,
however, because of the difference in the flow patterns attending the two
different motions of the body. 8 Recalling that a given flow pattern requires
a unique velocity potential to produce it (see Reference 4, Sec. 3. 71, p. 87);
that the kinetic energy is derivable from the velocity potential (see, for
example, Equation (1), Sec. 121, p. 163, of Reference 2); and that the
added mass effects are the result of changes in the kinetic energy of the
fluid (Equations [8 1); it is reasonable to expect different added mass effects
from the two different flow patterns.

13



DIFFERENT EXPERIMENTAL APPROACHES

The preceding discussion suggests that a given added mass deriva-
tive might be evaluated experimentally by two or more basically different
techniques. As an example, Y- could be determined, in principle, by
either accelerating the body in the direction of the y-axis or by giving the
body the motion depicted in Figure 3. The author believes that if experi-
ments were conducted with perfection, using two different modes of motion
in a real fluid, the resultant values of Y, would differ from each other and
from the theoretical value because the two motions differ in the degree to
which the conditions of potential flow are met. It seems desirable, how-
ever, to adopt the basic added mass expressions in the form presented in
Equations [1], which applies to potential flow conditions, and to add cor-
rective second or higher order terms to the basic equations if sufficient
experimental data are available to make such corrections feasible.

NATURE OF ADDED MASS DERIVATIVES

The purpose of the following discussion is twofold: to show the rela-
tion between the geometry of the body and the values of its theoretical added
mass derivatives; and to demonstrate that the added mass is related not to
the mass of the body but to the mass of the fluid displaced.

SOURCES OF NUMERICAL DATA

The intended scope of this paper does not include a discussion of
methods of calculating or measuring the values of the 21 added mass deriva-
tives that characterize the added mass properties of a body. Evaluation of
certain of the derivatives has been treated by many authors. A few repre-
sentative papers are those of References 5, 6, and 9 through 17. Most of
the titles are adequately descriptive of the material treated, but it should
be mentioned that Reference 5 covers a wide range of valuable background
material. References 13 and 14 contain experimental data on rectangular
plates and prisms. The theoretical values of the derivatives pertaining to
ellipsoid and a prolate spheroid will be examined in some detail at this
point in order to indicate the nature of the added mass derivatives.

ADDED MASS DERIVATIVES FOR AN ELLIPSOID

The equation of an ellipsoid, with elliptical cross sections in all three
planes of symmetry, when referred to principal axes with the origin at the
center of the ellipsoid, is 2 2 2

+ +
2 b2 2

a b c [1n1
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where a, b, and c are the semiaxes. On page 164 of Reference 2, Lamb
gives for such an ellipsoid

oL 4
X.. T ~rpabc

U. 2- a 3
0

Y. 0 'Pabc
v 2- P0 3

Z~w = YO 4

2. 3-irpabc

2 ZZ

K. -1 (b -ca)(y' 0  - 0)" 4
2 b2 2 - 2 (

K 52(b )+(b -d y 3 -rpabc[12

M. 1 (C - aZ)Z( C -0 ) __ YO) 4 2 -rpabcMqi 5 2(ccZ a ) + (c2+ a2) (y0 a0)

2 2 2(a -b) 2(b C-)
N. = - a b c 2

r •2(a 2 - b ) - (a2 + b ) (a 0 -P) 3

where a 0, po, yo are constants that describe the relative proportions of the
ellipsoid (see p. 153, loc. cit.). Also
X. X. X . X. X. Y. Y. = Y. = Y. = 0

V W p q r w p q r

[13]

Z. = Z. Z. X. K. M. = 0
p q r q 1. r

from Equations [12] It is evident that the added mass derivatives are func-
tions only of the shape and size of the ellipsoid and of the fluid density p.

ADDED MASS DERIVATIVES FOR A PROLATE SPHEROID

A prolate spheroid revolved about the x-axis is obtained from the
ellipsoid of Equation [llJ if b c and a > b. Then 30 = y0 and, from
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Equations [12], Y, = Zi; also M4 N. and K= 0. Equations [13] are
still valid. Consequently,

x . = CL 4 Trp ab 2
U 2-a 4 3

0

Y. Z - - P0 4 2pab2
v w 2-PO 3 ~a

[14]
K. 0

P

z 22.N. (b-a) (a P) 2
r 5 2 2 2 lrpab2(0 - a2) + (b -1 a 2) ( 0  - a 0

For the prolate spheroid under discussion

e 1 - (b/a) f15

where e is the eccentricity of the meridian elliptical section. Also

_ 2(1-y 2 ) log 1I

C2

0 log

e e 3 
'

LAMB'S k FACTORS
a0

Let k 2 0-0

k PO [17]

e (P0 - a 0)

- e ) [2e - (2 - e XP 0 CE.
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Then Equations [14] may be written

X =-k --i rpab
u 1 3

Y - Z. =--k 4rpab 
[

v" w 2-3-''a2[8

4 2 2 3

N. = M, = - k' -L" rpab2 (a2 + bZ)
r q 15f

All the remaining added mass derivatives are zero for the prolate
spheroid (for the assumed location of the reference axes). By virtue of
Equations [15.1, [ 16], and [ 17j, the values of kl, k2 , and k' are pure
numbers determined solely by the fineness ratio a/b of the spheroid.
Representative values of the three parameters are tabulated on page 155
of Reference 2.

SOME ERRONEOUS CONCEPTS

In Equations [18J , the factor 4±rpab2  is the mass of the volume
3 4 -, a2

of fluid dibplaced by the spheroid and -1rptbh (a + b-) is the

moment of inertia, about the y- or z-axis, of the same volume of fluid.
Although Equations [18] show that the added mass derivatives are
proportional to the mass or moment of inertia of this specific volume
of fluid, the mistake must not be made of assuming that the added mass
effects involve only a limited volume of the fluid, or that some limited
volume of fluid moves with the body - the so-called "entrained fluid"
erroneously described by some authors. All the particles of fluid move,
although the motion of the fluid is more pronounced in the neighborhood
of the body. Darwin has endeavored to describe the nature of this
motion. 18

The preceding discussion established that the added mass deriva-
tives for a prolate spheroid have the dimensions of either a mass or a
moment of inertia. This result is generally true for any body - hence
the added mass derivatives for any body can always be expressed as
some proportionality factor times either the mass of fluid displaced by
the body or some moment of inertia of that configuration of fluid.
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FIXED BODY IN AN ACCELERATING FLUID

The main purpose of this paper is to present expressions for a body
accelerated in a fluid that is otherwise at rest. A few remarks are con-
sidered desirable, however, on the different added mass effect experienced
if the body is stationary and the fluid is accelerated. The difference arises
because of the pressure gradient required in the fluid in order to accelerate
the fluid flow.

Euler's equation shows that the pressure gradient in an accelerating
fluid is opposite to the direction of the acceleration and its magnitude is
the product of the fluid density and the acceleration. When the accelera-
tion is uniform throughout a region of fluid a uniform pressure gradient
exists.

The effect of an uniform gradient in producing a force on a body is
demonstrated by considering the uniform pressure gradient that exists in
a stationary fluid resting in the earth's gravitational field. That gradient
produces the well-knowa buoyancy force, in a direction opposite to the
pressure gradient, on any body that displaces some oF the fluid. The
magnitude of the buoyancy force is given by the product of the volume of
fluid displaced times the pressure gradient.

It follows that a fixed body in an uniformly accelerating fluid will
experience a buoyancy-type force hii the direction of the fluid accelera-
tion. The magnitude of the force is given by the triple product: the
fluid density times the volume of fluid displaced times the acceleration
of the fluid. This force must be added to the usual force produced by the
added mass effect attending the relative acceleration between the body and
the fluid.

In the preceding section of this paper, where the nature of the added
mass derivatives was discussed, it was stated that the force produced by
the added mass effect of an accelerating body in a stationary fluid is pro-
portional to the mass of fluid displaced. If the factor of proportionality
is called k, then the force produced by the added mass effect for the
reverse situation of a stationary body and an accelerating fluid is obtained
by replacing k by (1 + k). Some treatmgnts of added mass in accelerated
flows are contained in References 19 and 20.
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